点击上面的蓝色字 即可免费订阅!
微信名 (微信号:请填写您的微信号)
数学家们常常把数表示在一条直线上,这条直线就是教材上说的数轴。在数轴上取一个点,这个点就代表了一个数。
“0”:一切从“零”开始
“0”表示没有。“0”也是我们构造数系必需的一个数。当我们要写的数不止一位数时,“0”就是一个占位符号——“0”让我们清楚地知道2块钱和20块钱的区别。
“0”本身在数学时也是至关重要的数。“0”是“加法单位元”——任何数加上“0”得到的还是那个数本身:3+0=3。“0”的这个性质也是它在算术和代数中的核心性质。“0”在数轴中间,把数轴分成正半轴和负半轴两部分,而且它还是我们构建数系的起点。
“1”:只有零我们做不了太多,于是我们有了“一”
“0”是“加法单位元”,而是“1”是乘法单位元——任何一个数乘以“1”得到的数都是那个数本身:5×1=5。
有了“1”,我们就能开始构建我们的数轴了。特别的,我们用“1”来得到自然数:0,1,2,3,4,5,等等。我们不断地在其自身上加上“1”来得到不同的数:2就是1+1,3就是2+1,4就是3+1,不断下去,直到无穷。
自然数是我们最基本的数。我们利用它们来数东西。同样,我们可以用自然数来做算术:两个自数然,它们相加或者相乘,能得到别的自然数。 一些时候——当然不是任何时候——我们也能用减法和除法得到别的自然数:10-7=3以及18÷2=9。只需用“0”、“1”和基本的算术运算,我们已经能做得很不错了,很多数学也只用到了自然数。
“-1”: 自然数已经非常好了,但它能做的事还是很有限。
刚才说过,不是任何两个自然数相减都能得到自然数。如果我们所有事都围绕自然数来做,我们无法解释像这样一个式子:3-7。
在数学里,有一种精彩的事故——当遇到类似局限时,我们可以扩充我们的系统来打破这样的局限。为了让每个减法有意义,我们加入“-1”来扩充我们的数轴。“-1”能生产出所有负整数,因为“-1”与任何数相乘能得到那个数的相反数:-3就是-1×3。带来负整数的同时,我们也解决了刚才减法的问题:3-8=-5。把正整数、零和负整数放在一起,我们得到了整数,而且我们在任何时候都可以将两个整数做减法,得到的还是整数。整数为数轴提供了很多锚点。
负数对欠款的表示很有用。如果我信用透资取了500块钱,于是我可以认为银行账户的余额为-500元。负数也让我们在一些数量表示时,使用比零小的数成为可能,比如说气温。在冰冷南极,平均气温能达到-40°C左右。
“1/10”:整数适用于描述完整的事物,但对于一些事物我们需要讨论它的一部分。
同样的,整数的算术体系同样不完整——即便我们任何时候把两个整数做加、减、乘还是得到整数,但是有时候,两个整数做除法,我们得不到整数。如只有整数,9÷5将没有意义。
为了应付这个情况,我们在数轴上加入“1/10”,或者说“0.1”。有了“0.1”,我们对他做乘方能得到0.01,0,001,0.0001,等等。这样,我们能表示分数和小数了。9÷5就是1.8。两个整数相除(被除数不能为零)能得到小数。它们有的是有限小数,像1.8,有的是循环小数,像1÷3=0.33333……,无限个3循环下去。这种形式的小数,我们叫有理数,他们能表示成两个整数的比值,即分数。有理数在算术运算下已经是封闭的了——对任何两个有理数做加、减、乘、除得到的还是有理数。
有理数让我们能表示出整数之间的数,也能表示出一个整体的一部分。比如我和我的三个朋友要分享一个大蛋糕,我们把蛋糕切了,每人拿到蛋糕的1/4,0.25或者25%。有理数帮助我们开始填补数轴上整数与整数之前的缝隙了。
“根号2”:有理数打开了无理数的大门,因为有的数不能表示成整数的之间的比。
一个数的算术平方根是这样一个非负数,即它的平方等于原来的那个数。于是9的算术平方根是3,因为3?2; = 3 x 3 = 9。我们能为每一个正数找到算术平方根,只是有一些,他们的算术平方根有些复杂。
2的算术平方根就是这样复杂的数。它是一个无理数——他的小数展开后,不会终止,也不会循环。“根号2”展开的数字是这样的1.41421356237……看起来规律很奇怪和混乱。实际上,大部分有理数的算术平方根都是无理数——而一些例外,比如说9叫做完全平方数。平方根在代数是非常重要,它们是很多方程的解。比如说“根号2”是x?2;=2的解。
有理数和无理数放在数轴上,我们就能铺满整个数轴。有理数和无理数一起,我们称为实数,它们是在各种计算中最常用到的数。现在,我们完成了整个数轴的构建,我们来看看一对非常重要的无理数。
“π”: 现在我们来增加维度,到平面和立体几何中去
圆周率“π”——圆周长与半径之比——可能是几何中最重要的一个数。“π”展示了一些关于圆和球的基本关系——半径为r的圆的面积是πr?2;,半径为r的球的面积是4πr?3;/3。
“π”在三角函数也有重要性质。2π是基本三角函数正弦函数和余弦函数是最小正周期。就是说,函数值在每一个2π长度的区间上不断重复。这样的函数用于描述周期变化或者不断往复的事物,比如说声波。
和“根号2”一样,“π”是一个无理数。它的小数展开不会终止,也不会循环。开始的几位小数大家非常熟悉, 3.14159……,数学家用计算机,通过夜以继日的计算,面把“π”展开到了10万亿位以后,但我们大多时候只需要前面很少的几位,去得到一些精确的结果。
“e”: 用它来计算复利
自然对数底,又叫欧拉数,用“e”来表示。“e”是指数函数的底数。指数函数用来表示一个事物数理倍增或者衰减的过程。如果一开始两只兔子,一个月后有了4只,两个月后有了8只,三个月后有了16只。推广下去,n个月后,有了2^(n+1)只,——n+1个2自己乘起来。
“e”是无理数,展开是2.71828……,但和所有无理数一样,小数点后面的数字永远不会终止也不会循环。e^x叫做自然指数函数,他是其它指数函数的基准。原因有些许复杂,因为e^x很特别。如果你们学过微积分,你会知道e^x的导数还是e^x。就是说对每个x,函数e^x的在点x的增长率正好是函数值本身——比如x=2,那么e^x在这点的增长率是e?2;。这是只有e^x才具有的唯一性质,使得e^x在数学上有着非常漂亮的操作性。
e^x在大部分指数过程中很有用。有一个常见应用就是计算复利。初始的本金是P,年利率是r,那么在t年投资回报A(t)可以表示成公式A(t)=Pe^(rt)。
“i”:现在,虚数来了
我们之前提到的内容,我们知道每个正数都能计算的算术平方根,所以我们来看看对于负数会发生什么。负数在实数范围内是没有算术平方根的。两个负数相乘得到的是正数,所以任何实数的平方都是不小于零的,即没有一个实数的平方是负数。但是,我们之前也说过,当遇到局限时,我们可以扩充我们的系统来打破这样的局限。
所以,我们遇到的局限是“-1”没有平方根,于我们就傻傻地问自己,如果有会怎么样?我们定义了“i”,叫做虚数单位,作为“-1”的平方根。然后,把所有的数作加、减、乘、除,想办法让这些结果有意义,于是我们把实数扩展到了复数。
复数有着很多让人惊奇的性质和应用。我们把实数用一条直线表示,我们也能把复数用一个平面表示,横轴表示实数,纵轴上的点都是虚数,用来表示负数的平方根。每个多项式方程至少有一个复数解,这是一个非常重要的结果,数学家们称为代数基本定理。在几何上,复平面能导出很多让人吃惊和漂亮的结果,在物理的电学和工程中也有很多应用。
|