您现在的位置: 微素材 >> 教育知识 >> 高中知识 >> 素材正文

高中数学公式、定理、思想方法快速记忆法,太全面了!

作者:admin    素材来源:本站原创    点击数:    更新时间:2015/2/6

点击上面的蓝色字 即可免费订阅!

微信名 (微信号:请填写您的微信号)

为了让学生能从宏观上把握教材,进一步从中提炼数学理念,根据多年的教学实践,对高中教材内容以及其中渗透的数学思想精选缩编.作出这样的尝试,目的在于抛砖引玉,激发学生自主的创作热情,在领悟中进一步学会学习.

一.数学思想方法总论

高中数学一线牵,代数几何两珠连

三个基本记心间,四种能力非等闲

常规五法天天练,策略六项时时变

精研数学七思想,诱思导学乐无边

一线:函数一条主线(贯穿教材始终)

二珠:代数、几何珠联璧合(注重知识交汇)

三基:方法(熟)知识(牢)技能(巧)

四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)

五法:换元法、配方法、待定系数法、分析法、归纳法

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动

七思想:函数方程最重要,分类整合常用到

数形结合千般好,化归转化离不了

有限自将无限描,或然终被必然表

特殊一般多辨证,知识交汇步步高.

二.数学知识方法分论:

《集合与逻辑》

集合逻辑互表里,子交并补归全集

对错难知开语句,是非分明即命题

纵横交错原否逆,充分必要四关系

真非假时假非真,或真且假运算奇

《函数与数列》

数列函数子母胎,等差等比自成排

数列求和几多法?通项递推思路开

变量分离无好坏,函数复合有内外

同增异减定单调,区间挖隐最值来

《三角函数》

三角定义比值生,弧度互化实数融

同角三类善诱导,和差倍半巧变通

解前若能三平衡,解后便有一脉承

角值计算大化小,弦切相逢异化同

《方程与不等式》

函数方程不等根,常使参数范围生

一正二定三相等,均值定理最值成

参数不定比大小,两式不同三法证

等与不等无绝对,变量分离方有恒

 

《解析几何》

联立方程解交点,设而不求巧判别

韦达定理表弦长,斜率转化过中点

选参建模求轨迹,曲线对称找距离

动点相关归定义,动中求静助解析

 

《立体几何》

多点共线两面交,多线共面一法巧

空间三垂优弦大,球面两点劣弧小

线线关系线面找,面面成角线线表

等积转化连射影,能割善补架通桥.

《排列与组合》

分步则乘分类加,欲邻需捆欲隔插

有序则排无序组,正难则反排除它

元素重复连乘法,特元特位你先拿

平均分组阶乘除,多元少位我当家.

《二项式定理》

二项乘方知多少,万里源头通项找

展开三定项指系,组合系数杨辉角

整除证明底变妙,二项求和特值巧

两端对称谁最大?主峰一览众山小.

《概率与统计》

概率统计同根生,随机发生等可能

互斥事件一枝秀,相互独立同时争

样本总体抽样审,独立重复二项分

随机变量分布列,期望方差论伪真.

具体是什么意思,相信就不用为大家讲解了。以上的这些顺口溜记熟了。对于学习数学是很有帮助的。

 

【数学】顺口溜:高中数学公里定理

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负

二、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法

四、《数列》

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定

 

五、《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别

六、《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式

七、《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片

八、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学